Close Menu
    Facebook X (Twitter) Instagram
    Trending
    • INTRODUCTION TO SUBSTATION EARTHING
    • Maintenance of GIS (Gas-Insulated Switchgear)
    • Nameplate Detail of Isolators/Dis-connectors- A Detail Guide
    • What is the use of an anti-pumping relay?
    • Key Components of Control & Relay Panel
    • TRANSMISSION TOWER CONFIGURATION
    • Nameplate Detail of Current Transformer – A Detail Guide
    • Major parameters of a circuit breaker
    Electric Know How
    • Home
    • Generation
      • Hydropower Station
      • Thermal Power Station
      • DISTRIBUTED ENERGY SOURCES
      • Diesel Generator
      • Industrial Tools
      • DC System-Generating Stations
    • Transmission
      • High Voltage DC Transmission
      • High Voltage AC Transmission
        • Transmission line – An Overview
        • TRANSMISSION TOWER CONFIGURATION
      • Three Phase Control Wiring
    • Distribution
      • Distribution System Overview
      • Faults in Distribution Lines
    • Protection
      • Power System Protection
        • Types of Fault in Power System
        • Relay Setting Calculation for Substation
        • Circuit Breaker
          • Major parameters of a circuit breaker
        • Key Components of Control & Relay Panel
      • OVERVIEW OF TRANSFORMER PROTECTION
        • Differential Protection of Transformer
      • OVERVIEW OF GENERATOR PROTECTION
      • Distance Protection
      • Electrical Safety
    • Switchgear
      • Electrical Sub-Station
        • BATTERY SYSTEM IN GRID SUBSTATION
        • Operation of Float Cum Boost Charger
        • Protection Circuitry of Battery Charger
        • Power Transformer
          • INSULATION RESISTANCE OF TRANSFORMER
          • WTI AND OTI in Power Transformer
          • Transformer Oil Dielectric strength
        • Sub-Station Operation
        • Multiplying Factor for Energy Meter
      • Current Transformer
        • Nameplate Detail of Current Transformer – A Detail Guide
      • Potential Transformer
      • Isolator in Substation
      • Electrical Busbar
      • Insulators
      • Clamps and Connectors
      • Fire Fighting System
      • Lightening Arrester
      • Gas Insulated Substation
        • Local Control Cubicle
        • SF6 circuit breaker gas compartment
    • Q&A
      • FAQS ON Current Transformer
      • POWER SYSTEM
      • FAQ ON BUSBAR
    Electric Know How
    Home»Q&A»Lightening Arrester
    Q&A

    Lightening Arrester

    madhusmitaBy madhusmita25 November 2022Updated:16 March 2023No Comments3 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email
    Lightening Arrester

    Table of Contents

    Toggle
    • INTRODUCTION
      • What is a surge arrester in the substation?
      • Where is the surge arrester placed in the substation?
      • What is arrester used for?
      • How Does a Lightning Arrester Work?
      • What are the tests conducted on surge arrester?

    INTRODUCTION

     This electrical Lightening Arrester(LA) training course introduces basic safe operational and field diagnostics of LAs with a focus on safe operation, testing, and maintenance of the LAs’ normally installed in substations.

    What is a surge arrester in the substation?

    A surge arrester is a device to protect electrical equipment from over-voltage transients caused by external (lightning) or internal (switching) events.

    Where is the surge arrester placed in the substation?

    To protect a unit of equipment from transients occurring on an attached conductor, a surge arrester is connected to the conductor just before it enters the equipment.

    What is arrester used for?

    The purpose of using a surge arrester is to always limit the voltage across the terminals of the equipment to be protected below its insulation to withstand voltage. This is achieved by connecting elements with an extremely nonlinear voltage-current characteristic (varistor) in parallel to the terminals of the equipment.

    How Does a Lightning Arrester Work?

    • Metal oxide (MO) surge arresters containing ceramic MO elements mainly made from zinc oxide and bismuth oxide are used.
    • The resistor elements offer non-linear resistance such that for normal frequency the power system voltage the resistance is high and the lightning arrester does not conduct.
    • When a surge voltage travels along the line and comes to the arrester the gap breaks down and the resistance being low the surge is diverted to the earth.
    • After a few microseconds, the surge vanishes and the power frequency voltage is set up across the arrester and the arc current reduces.
    • All electrical equipment in an electrical system needs to be protected from voltage surges.
    • The rating of the arrester, the class of the arrester, and the location of the arrester all play a part in surge protection.
    • Surge arresters protect the equipment of transmission and distribution systems, worth several magnitudes more than the arresters themselves, from the effects of lightning and switching overvoltages.

    What are the tests conducted on surge arrester?

    1. Insulation Withstand Test- is an electrical test carried out  on a component or product to determine its insulation strength.
    2. Residual Voltage test This test confirms that no dangerous voltages are present after the supply has been removed as a result of circuits retaining a charge.
    3. Power Frequency Voltage versus Time curve
    4. Internal Partial Discharge Test
    5. Moisture ingress Test (For Station type Surge Arrester)

    Causes for Failure of Metal Oxide Surge Arresters

    • Incorrect arrester specification corresponding to actual system voltage and overvoltage stress
    • Overloading due to:

    o Temporary overvoltages (cracking, puncturing)

    o Switching overvoltages (cracking, puncturing, and flashover)

    o Lightning overvoltage (change of characteristic/aging, flashover, puncturing).

    • External pollution or moisture penetration
    • The consequence of aging: Increase in the continuous resistive leakage current. This is a good indicator of the arrester’s condition.

    Methods for Monitoring of degradation of MOSA

    • Visual inspection

                   Locating external abnormalities on the arrester gives practically no information about the internal of the arrester.

    • Surge counters

                   Frequently installed on MOSA, but has no practical use for diagnosis of the condition of the arresters.

    • Temperature measurements–Thermo Vision

                   Detects the increased block temperature on the housing surface of the arrester.

    • Leakage current measurements

                   For in-service testing, the method with the indirect determination of the resistive leakage current with compensation for harmonics in the voltage provides the best available information quality with respect to diagnostic efficiency.

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleIsolator in Substation
    Next Article Clamps and Connectors
    madhusmita
    • Website
    • Facebook
    • Instagram
    • LinkedIn

    Related Posts

    LIST OF B.TECH/M.TECH PROJECT IDEAS (MATLAB SIMULATION)

    16 May 2023

    Job Opportunities for Electrical Engineers 

    8 April 2023

    FAQ ON BUSBAR

    25 November 2022

    Comments are closed.

    Recent Posts
    • INTRODUCTION TO SUBSTATION EARTHING
    • Maintenance of GIS (Gas-Insulated Switchgear)
    • Nameplate Detail of Isolators/Dis-connectors- A Detail Guide
    • What is the use of an anti-pumping relay?
    • Key Components of Control & Relay Panel
    Certification Course
    Archives
    • January 2025
    • December 2024
    • August 2024
    • July 2024
    • May 2024
    • March 2024
    • February 2024
    • January 2024
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • June 2023
    • May 2023
    • April 2023
    • March 2023
    • December 2022
    • November 2022
    Categories
    • Distribution
    • Generation
    • Nameplate Details
    • Protection
    • Q&A
    • Switchgear
    • testing
    • Transmission
    Electric Volt

    Quick Links

    • Home
    • About Us
    • Contact Us

    Post Categories

    • Generation
    • Transmission
    • Distribution
    • Protection
    • Switchgear
    • Q&A

    Vip Link

    • Privacy Policy
    • Disclaimer
    • Terms and Conditions

    Contact Us

    • [email protected]
    Linkedin